Round Optimal Concurrent Non-malleability from Polynomial Hardness
نویسنده
چکیده
Non-malleable commitments are a central cryptographic primitive that guarantee security against man-in-the-middle adversaries, and their exact round complexity has been a subject of great interest. Pass (TCC 2013, CC 2016) proved that non-malleable commitments with respect to commitment are impossible to construct in less than three rounds, via black-box reductions to polynomial hardness assumptions. Obtaining a matching positive result has remained an open problem so far. While three-round constructions of non-malleable commitments have been achieved, beginning with the work of Goyal, Pandey and Richelson (STOC 2016), current constructions require super-polynomial assumptions. In this work, we settle the question of whether three-round non-malleable commitments can be based on polynomial hardness assumptions. We give constructions based on polynomial hardness of Decisional Di e-Hellman assumption or Quadratic Residuosity or N th Residuosity, together with ZAPs. Our protocols also satisfy concurrent non-malleability.
منابع مشابه
4-Round Concurrent Non-Malleable Commitments
The round complexity of non-malleable commitments and non-malleable zero knowledge arguments has been an open question for long time. Very recent results of Pass [TCC 2013] and of Goyal et al. [FOCS 2014, STOC 2016], gave almost definitive answers. In this work we show how to construct round-efficient non-malleable protocols via compilers. Starting from protocols enjoying limited non-malleabili...
متن کامل4-Round Concurrent Non-Malleable Commitments from One-Way Functions
How many rounds and which computational assumptions are needed for concurrent nonmalleable commitments? The above question has puzzled researchers for several years. Recently, Pass in [TCC 2013] proved a lower bound of 3 rounds when security is proven through black-box reductions to falsifiable assumptions. On the other side, positive results of Goyal [STOC 2011], Lin and Pass [STOC 2011] and G...
متن کاملFour-Round Concurrent Non-Malleable Commitments from One-Way Functions
How many rounds and which computational assumptions are needed for concurrent nonmalleable commitments? The above question has puzzled researchers for several years. Recently, Pass in [TCC 2013] proved a lower bound of 3 rounds when security is proven through black-box reductions to falsifiable assumptions. On the other side, positive results of Goyal [STOC 2011], Lin and Pass [STOC 2011] and G...
متن کاملPromise Zero Knowledge and its Applications to Round Optimal MPC
We devise a new partitioned simulation technique for MPC where the simulator uses different strategies for simulating the view of aborting adversaries and non-aborting adversaries. The protagonist of this technique is a new notion of promise zero knowledge (ZK) where the ZK property only holds against non-aborting verifiers. We show how to realize promise ZK in three rounds in the simultaneous-...
متن کاملAdaptive and Concurrent Secure Computation from New Adaptive, Non-malleable Commitments
We present a unified approach for obtaining general secure computation that achieves adaptive-Universally Composable (UC)-security. Using our approach we essentially obtain all previous results on adaptive concurrent secure computation, both in relaxed models (e.g., quasi-polynomial time simulation), as well as trusted setup models (e.g., the CRS model, the imperfect CRS model). This provides c...
متن کامل